
Center for Information Services and High Performance Computing (ZIH)

Parallel Debugging with DDT

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 2

Why using a Debugger?

Your program shows incomprehensible behavior, e.g.

— Program terminates abnormally

— Program produces wrong results

You want to know what your program is (really) doing

% icc myprog.c –o myprog
% ./myprog
Segmentation fault

% ./myprog
Pi = 3.573

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 3

What can a Debugger do?

Observe a running program:
— Print variables (scalars, arrays, structures / derived types, classes)
— Inform about current source code line and function (function call stack)

Control program execution:
— Stop the program at a specific source code line (Breakpoints)
— Stop the program when certain conditions are true (Conditional

Breakpoints and Watchpoints)
— Stop the program before terminating abnormally
— Execute the program line-by-line (Stepping)

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 4

Typical Usage of a Debugger

Development workflow

— Compile the program with –g

— Run the program under control of the
debugger

— Use the Debugger to locate the position
of the problem and examine variables

— Understand the cause of the problem
and correct the source code

— Repeat until problem is solved

mpif90 –g myprog.c –o myprog

ddt <mpirun command> ./myprog

Hints:
Always compile your
application with the –g flag,
especially during developing
and testing. It adds symbolic
debug info to the binary and
has no performance impact.

Optimizations often
interfere with debugging
(e.g. functions or variables of
interest are “optimized
away”). If necessary, compile
with the –O0 flag to disable
optimizations.

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 5

Debugger Operation Modes

Start program under debugger control
— Most common way to use a debugger
— Not useful if you want to observe what the program does after a long

runtime or you do not expect problems
Attach to an already running program
— Program was not started under debugger
— Useful if program has been running for a long time

Core files / core dumps
— Core files are memory state of a crashed program written to file
— Only static analysis of program’s data after termination
— Useful if you don’t expect a crash or don’t want to wait until a crash

happens (probably after long runtime)

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 6

Arm DDT
Distributed Debugging Tool

— Commercial debugging tool by Arm
(Arm acquired Allinea in 2016)

— Languages: C, C++, Fortran
— Parallel Support: Pthreads, OpenMP,

MPI, PGAS languages, CUDA,
OpenACC

— Available for all common HPC platforms
— Intuitive graphical user interface

— More info:
https://developer.arm.com/tools-and-software/server-and-hpc/debug-and-
profile/arm-forge/arm-ddt

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 7

DDT: Program Start

% mpicc –g –O0 heatC-MPI.c –o heatC-MPI
% ddt mpirun -np 4 ./heatC-MPI

Compile with
Debugging

Start DDT: prepend ddt
to mpirun command line

Enable/disbale OpenMP
and set number of

threads if necessary

Start Program

On Taurus we use srun instead of mpirun:
ddt srun –n 4 ./heatC-MPI

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 8

DDT: Main Window

Process
control: run,

stop, stepping

Source file
browser

Process and
thread selection

Output, Breakpoints,
Watchpoints, Call stack

Variables
pane

Evaluation
window

Source view

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 9

DDT: Process Control & Stepping

Step to
next code

line

Run

Step over
function

calls

Step out of
current
funtion

Right mouse button
at source code line

-> „Run to here“

Commands may affect
whole group or single
processes / threads

Select group /
processes

Pause

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 10

DDT: Segmentation Fault

Processes 2 and
3 crashed

Line where the
program crashed

is highlighted

Segmentation
Fault!

Hit “Pause” to
stop the program

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 11

DDT: Breakpoints (1/2)

Click to the
margin left of the

line number

Or open context
menu on source

code line

Then hit
run …

Edit breakpoint, e.g.
to add condition

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 12

DDT: Breakpoints (2/2)

Processes 0 and 2
stopped at conditional

breakpoint

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 13

DDT Practical 1: Conditional Breakpoints

C:

Fortran 90:

Task A:
— Find out the value of dthetamax after step 10 has been computed.
— Hint: Use a conditional breakpoint in the time stepping loop (main program)

Task B (optional):
— Which process contributed the maximum to dthetamax at the

MPI_Allreduce in heatTimestep after step 10 has been computed?
— Hint: use an additional breakpoint at the MPI_Allreduce, then right click on the

variable mymax in the variables pane and select “Compare Across Processes”

% cd ~/Debugging/c
% mpicc -g -O0 heatC-MPI.c -o heatC-MPI
% ddt srun -n 4 ./heatC-MPI

% cd ~/Debugging/f90
% mpif90 -g -O0 heatF-MPI.F90 -o heatF-MPI
% ddt srun -n 4 ./heatF-MPI

In the DDT run window:
uncheck OpenMP, CUDA,

Mem. debugging and hit run

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 14

DDT Practical 1: Task A Solution

dthetamax = 0,512

Breakpoint in time
stepping loop,

condition: step==11

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 15

DDT Practical 1: Task B Solution

1: Run to breakpoint in
time stepping loop,
condition: step==10

4: Max. value at
processes 0 and 1

3: Open context menu for
mymax, select „Compare
Across Processes“

2: Then add breakpoint at
MPI_Allreduce in
heatTimestep

Not possible with a single
breakpoint: variable step is local
in main, variable mymax is local
in heatTimestep

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 16

DDT: Attach to running program

% mpif90 -g heatF-MPI-02.F90 –o heatF-MPI-02
% srun -n 4 ./heatF-MPI-02
. . .

% ddt

Attach

Attach to automatically
detected MPI job

Start DDT in a
2nd terminal

Program runs – you want
to know what it is doing?

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 17

DDT: Core Files (1/2)

% mpif90 -g -O0 heatF-MPI-01.F90 -o heatF-MPI-01
% ulimit -c
0
% ulimit -Sc 100000
% export FOR_DUMP_CORE_FILE=yes
% srun -n 2 ./heatF-MPI-01

. . .

forrtl: severe (174): SIGSEGV, segmentation fault occurred

. . .

srun: error: taurusi6595: tasks 0-1: Exited with exit code 174

. . .

% ls -lh core*
-rw------- 1 gpu59 1111111 42M Jan 27 13:21 core.taurusi6595.taurus.hrsk.tu-dresden.de.3371
-rw------- 1 gpu59 1111111 42M Jan 27 13:21 core.taurusi6595.taurus.hrsk.tu-dresden.de.3372
% ddt

Check core file size limit
(reports kB) and increase if
required (sets to 100 MB)

Intel Fortran only

Per-process core files

srun realizes crash

Segmentation Fault

Analyze with DDT

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 18

DDT: Core Files (2/2)

Open Core

DDT shows position of the crash in
the source code and values of
variables at the time of the crash.
But no running or stepping possible!

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 19

DDT: Multidimensional Array Visualization

“Visualize”

Right mouse
click on array

variable
Set ranges

and “Evaluate”

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 20

DDT: Memory Debugging

Check “Memory
Debugging“ and
click “Details…”

Set language,
enabled checks,
guard pages, etc.

Message when memory
error is detected, pause

to inspect the error

Get more
Information

This is detected
only if guard pages

are enabled

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 21

DDT Practical 2: Find the Bugs!

Find the bug in each of the three programs!
— Compile and first run normally (4 processes) to observe the behavior, then

use DDT to find the bug
— If the program stops in MPI, DDT may complain about missing source files:

ignore and select an application function in the call stack view
heatC-MPI-01 / heatF-MPI-01

— Produce core dumps (with up to 4 MPI processes) and open with DDT
— You already know this example from the Intro’s practical
heatC-MPI-02 / heatF-MPI-02

— Run without DDT and then attach DDT (use a second terminal session)
— In case of trouble when attaching: ensure that Options - System – Debugger is set to GNU 7.6.2

heatC-MPI-03 / heatF-MPI-03

— Hint: compare arguments of send and receive call

Optional OpenMP task on next slide

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 22

DDT Practical 3: Breakpoints with OpenMP (optional)

C:

Fortran 90:

Task:
— Run with 4 threads in DDT and find out which

thread computes which part of the 20 x 20 grid
Hints:
— Use a breakpoint in the inner compute loop in heatTimestep and examine

loop variable x, use condition y==1 to jump to the next iteration of the x-loop
— Fortran: x and y are interchanged compared to C, y-loop is parallelized: need to examine y
— Breakpoints in OpenMP parallel regions sometimes behave unexpected - it helps to run a single

thread, while pausing all others: select “Focus on current thread” and select the thread below

% cd ~/Debugging/c
% icc -g -O0 -fopenmp heatC-omp.c -o heatC-omp
% ddt ./heatC-omp

% cd ~/Debugging/f90
% ifort -g -O0 -fopenmp heatF-omp.F90 -o heatF-omp
% ddt ./heatF-omp

0 2 31y

x
C loop order,

Fortran order is
interchanged!

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 23

DDT Practical 2 Task 01: Solution (C)

Segmentation fault writing
grid->thetanew[0] in heatAllocate
Check if the array has been allocated

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 24

DDT Practical 2 Task 01: Solution (Fortran)

Segmentation fault writing
grid%thetanew(1,1) in heatTimestep
Check if the array has been allocated

Fortran version
crashes later than
C version

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 25

DDT Practical 2 Task 02: Solution

All processes are waiting at this
MPI_Recv in heatBoundary
Reason: Tags are not matching

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 26

DDT Practical 2 Task 03: Solution

Rank 0 receives
4 MPI_INT

Ranks 1-3 send 4 MPI_DOUBLE,
which is wrong and exceeds the
receive buffer of rank 0.

Caution: If ranks 1-3 would send 4
MPI_FLOAT, MPI would not abort
because the buffer size fits! Only
MUST could detect this error.

Parallel Debugging with DDT
Matthias Lieber, ZIH

Slide 27

DDT Practical 3: Solution

2: Select bottom call stacks

3: Compare x across
threads (via context
menu)

1: Run to a breakpoint in
OpenMP parallel for loop

Thread 0 computes x=1,..., x=5
Thread 1 computes x=6,..., x=10
etc.

