Skip to content

Custom Environments for JupyterHub

Info

Interactive code interpreters which are used by Jupyter notebooks are called kernels. Creating and using your own kernel has the benefit, that you can install your own preferred Python packages and use them in your notebooks.

We currently have two different architectures at ZIH systems. Build your kernel environment on the same architecture that you want to use later on with the kernel. In the examples below, we use the name "my-kernel" for our user kernel. We recommend to prefix your kernels with keywords like haswell, ml, romeo, venv, conda. This way, you can later recognize easier how you built the kernel and on which hardware it will work. Depending on that hardware, allocate resources as follows.

Preliminary Steps

Use one srun command of these:

maria@login$ srun --partition=haswell64 --pty --ntasks=1 --cpus-per-task=2 \
 --mem-per-cpu=2541 --time=08:00:00 bash -l
maria@login$ srun --partition=gpu2 --pty --ntasks=1 --cpus-per-task=2 \
 --mem-per-cpu=2541 --time=08:00:00 bash -l

Use one srun command of these:

maria@login$ srun --partition=romeo --pty --ntasks=1 --cpus-per-task=3 \
 --mem-per-cpu=1972 --time=08:00:00 bash -l
maria@login$ srun --partition=alpha --gres=gpu:1 --pty --ntasks=1 \
 --cpus-per-task=6 --mem-per-cpu=10312 --time=08:00:00 bash -l
maria@ml$ srun --pty --partition=ml --ntasks=1 --cpus-per-task=2 --mem-per-cpu=1443 \
 --time=08:00:00 bash -l

When creating a virtual environment in your home directory, you got to decide to either use "Python virtualenv" or "conda environment".

Note

Please keep in mind that Python virtualenv is the preferred way to create a Python virtual environment. For working with conda virtual environments, it may be necessary to configure your shell as described in Python virtual environments

Python Virtualenv

While we have a general description on Python Virtual Environments, here we have a more detailed description on using them with JupyterHub:

Depending on the CPU architecture that you are targeting, please choose a modenv:

For use with Standard Environment scs5_gcccore-10.2.0_python-3.8.6, please try to initialize your Python Virtual Environment like this:

marie@haswell$ module load Python/3.8.6-GCCcore-10.2.0
Module Python/3.8.6-GCCcore-10.2.0 and 11 dependencies loaded.
marie@haswell$ mkdir user-kernel # please use workspaces!
marie@haswell$ cd user-kernel
marie@haswell$ virtualenv --system-site-packages my-kernel
created virtual environment CPython3.8.6.final.0-64 in 5985ms
  creator CPython3Posix(dest=[...]/my-kernel, clear=False, global=True)
  seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle, via=copy, app_data_dir=[...])
    added seed packages: pip==20.2.3, setuptools==50.3.0, wheel==0.35.1
  activators BashActivator,CShellActivator,FishActivator,PowerShellActivator,PythonActivator,XonshActivator
marie@haswell$ source my-kernel/bin/activate
(my-kernel) marie@haswell$ pip install ipykernel
Collecting ipykernel
[...]
Successfully installed [...] ipykernel-6.9.1 ipython-8.0.1 [...]

Then continue with the steps below.

For use with Standard Environment hiera_gcccore-10.2.0_python-3.8.6, please try to initialize your Python Virtual Environment like this:

marie@romeo$ module load GCC/10.2.0 Python/3.8.6
Module GCC/10.2.0Python/3.8.6 and 11 dependencies loaded.
marie@romeo$ mkdir user-kernel # please use workspaces!
marie@romeo$ cd user-kernel
marie@romeo$ virtualenv --system-site-packages my-kernel
created virtual environment CPython3.8.6.final.0-64 in 5985ms
  creator CPython3Posix(dest=[...]/my-kernel, clear=False, global=True)
  seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle, via=copy, app_data_dir=[...])
    added seed packages: pip==20.2.3, setuptools==50.3.0, wheel==0.35.1
  activators BashActivator,CShellActivator,FishActivator,PowerShellActivator,PythonActivator,XonshActivator
marie@romeo$ source my-kernel/bin/activate
(my-kernel) marie@romeo$ pip install ipykernel
Collecting ipykernel
[...]
Successfully installed [...] ipykernel-6.9.1 ipython-8.0.1 [...]

Then continue with the steps below.

For use with the Standard Environment fosscuda/2020b, please try to initialize your Python Virtual Environment like this:

```console marie@ml$ module load fosscuda/2020b ZeroMQ/4.3.3-GCCcore-10.2.0 Python/3.8.6-GCCcore-10.2.0 Module fosscuda/2020b and 23 dependencies loaded. marie@ml$ mkdir user-kernel # please use workspaces! marie@ml$ cd user-kernel marie@ml$ python3 -m venv --system-site-packages my-kernel marie@ml$ sourcde my-kernel/bin/activate (my-kernel) marie@compute$ pip install ipykernel Collecting ipykernel [...] Successfully installed asttokens-2.0.8 backcall-0.2.0 debugpy-1.6.3 entrypoints-0.4 executing-1.0.0 ipykernel-6.15.2 ipython-8.4.0 jedi-0.18.1 jupyter-client-7.3.5 jupyter-core-4.11.1 matplotlib-inline-0.1.6 nest-asyncio-1.5.5 parso-0.8.3 pickleshare-0.7.5 prompt-toolkit-3.0.30 pure-eval-0.2.2 python-dateutil-2.8.2 pyzmq-23.2.1 stack-data-0.5.0 tornado-6.2 traitlets-5.3.0

Then continue with the steps below.

For use with Standard Environment production, please try to initialize your Python Virtual Environment like this:

marie@compute$ module load Anaconda3/2022.05
Module Anaconda3/2022.05 loaded.
marie@compute$ mkdir user-kernel # please use workspaces!
marie@compute$ cd user-kernel
marie@compute$ python3 -m venv --system-site-packages my-kernel
(my-kernel) marie@compute$ pip install ipykernel

Then continue with the steps below.

After following the initialization of the environment (above), the usage of Python's Package manager pip is the same:

(my-kernel) marie@compute$ pip install --upgrade pip
(my-kernel) marie@compute$ python -m ipykernel install --user --name my-kernel --display-name="my kernel"
Installed kernelspec my-kernel in .../.local/share/jupyter/kernels/my-kernel
(my-kernel) marie@compute$ pip install [...] # now install additional packages for your notebooks
(my-kernel) marie@compute$ deactivate

Warning

Take care to select the appropriate standard environment (as mentioned above) when spawning a new session.

Conda Environment

Load the needed module depending on partition architecture:

marie@compute$ module load Anaconda3
marie@ml$ module load PythonAnaconda

Hint

For working with conda virtual environments, it may be necessary to configure your shell as described in Python virtual environments.

Continue with environment creation, package installation and kernel registration:

marie@compute$ mkdir user-kernel # please use workspaces!
marie@compute$ conda create --prefix $HOME/user-kernel/my-kernel python=3.8.6
Collecting package metadata: done
Solving environment: done
[...]
marie@compute$ conda activate $HOME/user-kernel/my-kernel
marie@compute$ conda install ipykernel
Collecting package metadata: done
Solving environment: done
[...]
marie@compute$ python -m ipykernel install --user --name my-kernel --display-name="my kernel"
Installed kernelspec my-kernel in [...]
marie@compute$ conda install [..] # now install additional packages for your notebooks
marie@compute$ conda deactivate

Using your custom environment

Now you can start a new session and your kernel should be available.

Your kernels are listed on the launcher page:

JupyterLab user kernel launcher

You can switch kernels of existing notebooks in the menu:

JupyterLab change kernel

Your kernel is listed in the New menu:

Jupyter notebook user kernel launcher

You can switch kernels of existing notebooks in the kernel menu:

Jupyter notebook change kernel

Note

Both python venv and conda virtual environments will be mentioned in the same list.